Journal of Organometallic Chemistry, 231 (1982) 95–96 Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

OBSERVATION OF DIASTEREOMERS BY 199Hg NMR

JOHANN EICHBICHLER and PAUL PERINGER*

Institut für Anorganische und Analytische Chemie der Universität Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria)

(Received January 12th, 1982)

Summary

The diastereomeric parts of Hg-P bonded $Hg[P(O)(OBu^n)Ph]_2$ give rise to different ¹⁹⁹Hg NMR patterns. No enantiomeric discrimination occurs in the synthesis. Ligand redistribution reactions prevent the separation of the diastereomers.

Whilst the ¹⁹⁹Hg NMR spectrum of the Hg-P bonded bis[O-n-butyl-P-

(I)

phenylphosphonito] mercury (I) in pyridine consists as expected of a 1/2/1 triplet, in toluene or tetrahydrofurane two triplets are displayed (Fig. 1).

Fig. 1. $^{\overline{199}}$ Hg NMR spectrum of Hg[P(O)(OBuⁿ)Ph]₂ in tetrahydrofuran (0.25 mmol/cm³) recorded on a Bruker WP-80: $\delta(^{199}$ Hg): 1134.4 $^{1}J(^{31}P_{-199}$ Hg): 5275 Hz; $\delta(^{199}$ Hg): 1138.3, $^{1}J(^{31}P_{-199}$ Hg): 5264 Hz (chemical shifts in ppm to high frequency of aqueous Hg(ClO₄)₂ (2 mmol HgO/cm³ 60% HClO₄)).

0022-328X/82/0000-0000/\$02.75 © 1982 Elsevier Sequoia S.A.

Molecular weight measurements for I in benzene indicate a dimeric structure (as observed for bis(phosphito)mercury compounds [1]), and on the basis of the X-ray structure of $Hg[P(O)(OMe)_2]_2$ [1], association by Hg–O bonds seems likely. On the other hand the ³¹P NMR spectrum of I at ambient temperature displays only one ³¹P species and no ²J(³¹P–¹⁹⁹Hg) coupling pattern. This demonstrates the kinetic lability of the Hg–O bonds of I on the NMR time scale, as has been suggested for bis(phosphito)mercury compounds [1]. NMR detectable molecular association of I is however observed below 183 K. Hence the appearance of the two triplets (Fig. 1) cannot be explained by molecular association but seems to be due to the diastereomeric parts of I (containing two optically active P centers). The observation of two triplets shows the kinetic stability of the Hg–P bonds on this NMR time scale.

Compound I is formed via an enantiomeric intermediate eq. (1):

 $LH + Hg(OAc)_{2} \rightarrow HOAc + AcOHgL \quad L = OP(OBu^{n})Ph$ (1)

 $AcOHgL + LH \rightarrow HgL_2 + HOAc$

No enantiomeric discrimination is however observed upon formation of I from this intermediate, as shown by the almost equal intensities of the two ¹⁹⁹Hg triplets (Fig. 1). No separation of the diastereomers is possible because of the occurrence of the ligand redistribution reaction shown in eq. 2 on the preparative time scale.

$$LHgL + HgL_2 \rightleftharpoons LHgL + HgL_2 \quad L = OP(OBu^n)Ph$$
 (2)

This is the first report of the detection of diastereomers by ¹⁹⁹Hg NMR spectroscopy, taking advantage of the large range of chemical shifts of this nucleus [2] which makes it possible to distinguish rather similar chemical environments. This may be of considerable interest for the stereochemical investigations of compounds containing kinetically stable Hg—E bonds (e.g. E = C). An example of the use of ⁹⁵Mo NMR spectroscopy for the observation of diastereomers appeared very recently [3].

Acknowledgement. Thanks are due to the Fonds zur Förderung der Wissenschaft for making available the NMR spectrometer used.

References

1 G.G. Mather and A. Pidcock, J. Chem. Soc. Dalton Trans., (1973) 560; J. Benett, A. Pidcock,

C.R. Waterhouse, P. Coggon and A.T. McPhail, J. Chem. Soc. A, (1970) 2094. 2 R.G. Kidd and R.J. Goodfellow, in R.K. Harris and B.E. Mann (Eds.), NMR and the Periodic Table,

Academic Press, 1978. 3 M. Minelli, T.W. Rockway, J.H. Enemark, H. Brunner and M. Muschiol, J. Organometal. Chem., 217 (1981) C34.